- Twenty-five questions, equal weight.
- Due in dropbox by 11:59 pm
- Be sure to show all relevant work!
\#1. Given $f(x)=x^{2}-2 x$, evaluate and simplify: $f(x)-2 f(-x)$

$$
\begin{aligned}
& f(-x)=(-x)^{2}-2(-x)=x^{2}+2 x \\
& \begin{aligned}
f(x)-2 f(-x) & =x^{2}-2 x-2\left(x^{2}+2 x\right)= \\
& =x^{2}-2 x-2 x^{2}-4 x= \\
& =-x^{2}-6 x
\end{aligned}
\end{aligned}
$$

\#2. Behold the graph of a function:

a) Identify any x-intercepts) $\quad x=-5.5$
b) Identify any y-intercept $\quad y=-4$
c) State the domain $(-\infty, 4) \cup(4,5)$
d) State the range $\quad[-4, \infty)$
e) State any intervals) over which the function is increasing $(0,4)$
f) State any intervals) over which the function is decreasing $(-\infty,-5) \cup(4,5)$
g) State any intervals) over which the function is constant $(-5,0)$
h) This function has an absolute minimum of \qquad at $-5 \leqslant x \leqslant 0$.
\#3. Here's another nice function: $f(x)=\frac{3 x^{2}-4}{x^{2}-4}$
a) Identify any vertical asymptotes) $x^{2}-4=0 \rightarrow x= \pm 2$
b) Identify any horizontal asymptotes) $\lim _{x \rightarrow \pm \infty} \frac{3 x^{2}-4}{x^{2}-4}=3$
c) Is this function(even. odd, both, or neither? $f(-x)=\frac{3(-x)^{2}-4}{(-x)^{2}-4}=\frac{3 x^{2}-4}{x^{2}-4}=f(x)$ e ven
d) Locate any x-intercept(s). $3 x^{2}-4=0 \rightarrow x= \pm \frac{2}{\sqrt{3}}= \pm 1.2$
e) Locate any y-intercept(s). $f(0)=-4)^{2}-4$
e) Locate any y-intercept(s). $f(0)=\frac{-4}{-4}=1$
f) Plot all of the above information on the grid below.
g) Evaluate $f(4)$ and plot the point. $f(4)=\frac{3\left(4^{2}\right)-4}{4^{2}-4}=\frac{48-4}{16-4}=\frac{44}{12}=\frac{11}{3}=3.7$
h) Using only the above information, finish the (approximate) graph of f.

\#4. Penelope's Pistachio Emporium sells pistachios by the jar. If you buy a dozen or fewer jars, the charge is $\$ 8.00$ per jar; additional jars are $\$ 7.25$ each. Shipping is a flat charge of $\$ 4.50$ on all orders. Write a piecewise-linear model for the cost of x jars.

Dozen or fewer: $0 \leq x \leq 12$
cost $c(x)=4.50+8 x$
More than dozen: $x>12$

$$
\text { cost } \begin{aligned}
C(x)= & 4.50+ \\
& (8)(12)+7.25(x-12)= \\
& \$ 8 \text { for first dozen jars } \\
= & 4.50+96+7.25 x-87 \\
= & 13.5+7.25 x
\end{aligned}
$$

Summary:

$$
C(x)= \begin{cases}4.50+8 x, & 0 \leq x \leq 12 \\ 13.5+7.25 x, & x>12\end{cases}
$$

\#5. Start with the parent function $f(x)=|x|$.
a) If $f(x)$ is shifted right by 5 to form $g(x)$, then $g(x)$ is horizontally compressed by a factor of $1 / 2$ to form $\mathrm{h}(\mathrm{x})$, then what is h's equation?

$$
\begin{aligned}
& g(x)=|x-5| \\
& h(x)=|2 x-5|
\end{aligned}
$$

b) If $f(x)$ is horizontally compressed by a factor of $1 / 2$ to form $j(x)$, then $j(x)$ is shifted right by 5 to form $\mathrm{k}(\mathrm{x})$, what is k 's equation?

$$
\begin{aligned}
& j(x)=|2 x| \\
& k(x)=|2(x-5)|=|2 x-10|
\end{aligned}
$$

\#6. On the axes below, graph f using a dashed line and g using a solid line.

$$
\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} ; \quad \mathrm{g}(\mathrm{x})=\sqrt{-\mathrm{x}}+2
$$

\#7. Bonnie wants to graph $\mathrm{k}(\mathrm{x})=3$ - floor $(2 \mathrm{x})$. She wants to start with the graph of $\mathrm{f}(\mathrm{x})=\mathrm{floor}(\mathrm{x})$, which she knows by heart, and apply a sequence of transformations to arrive at the graph of k. Which transformations should she apply, and in what order? Please number your steps.

1. horizontal compression by factor of $1 / 2: g(x)=f l o o r(2 x)$
2. reflection about x axis: $h(x)=-f l o o r(2 x)$ 3. Shift up by 3 : $k(x)=3-f \operatorname{loor}(2 x)$
\#8. Graph $\mathrm{k}(\mathrm{x})=\frac{1}{2}(\mathrm{x}+1)^{2}-3$ by applying a series of transformations to $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$. Apply one transformation at a time, showing the new graph at each stage.
3. Parent: $\mathrm{y}=\mathrm{x}^{2}$

4. Transformation: shift left by 1 New equation: $y=(x+1)^{2}$

vertical compression
5. Transformation: \qquad by factor of $1 / 2$ New equation: $y=\frac{1}{2}(x+1)^{2}$
6. Transformation: shift down by 3

New equation:

$$
\mathrm{y}=\frac{1}{2}(\mathrm{x}+1)^{2}-3
$$

$$
-2{ }^{2}, \frac{3}{2}, x
$$

\#9. Here's a nice quadratic function: $f(x)=-2 x^{2}+6 x-1=-2\left(x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right)-1$
a) Find the coordinates of its vertex (in fraction form)

$$
=-2(\underbrace{x^{2}-3 x+\left(\frac{3}{2}\right)^{2}}_{\left(x-\frac{3}{2}\right)^{2}})+2 \cdot\left(\frac{9}{4}\right)^{-1}
$$

$$
\begin{aligned}
= & -2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2}-1 \\
= & -2\left(x-\frac{3}{2}\right)^{2}+\frac{7}{2} \\
& \text { vertex: }\left(\frac{3}{2}, \frac{7}{2}\right)
\end{aligned}
$$

b) Find the x -intercepts (if any) (in simplified radical form)

$$
\begin{aligned}
& 0=-2\left(x-\frac{3}{2}\right)^{2}+\frac{7}{2} \\
& \left(x-\frac{3}{2}\right)^{2}=\frac{7}{4} \\
& x-\frac{3}{2}= \pm \sqrt{\frac{7}{4}}= \pm \frac{\sqrt{7}}{2} \rightarrow x=\frac{3}{2} \pm \frac{\sqrt{7}}{2}=0.2 ; 2.8
\end{aligned}
$$

c) Find the y-intercept $f(0)=(-1$
d) Use the above information, and the symmetry property, to sketch a graph of f.

\#10. The main cable of a suspension bridge is hung from towers that are 80 feet tall (as measured from the level road surface) and 200 feet apart. At a point midway between the towers, the main cables come to a point just 4 feet above the road's surface. Draw the bridge, indicated your choice of $x-y$ axes, then write an equation for the main cable. (Use reduced fractions not decimals)

\#11. Freja sells about 200 lbs of her Swedish meatballs every week, at $\$ 5.00 / \mathrm{lb}$. Market analysis indicates that for each nickel she raises the price, sales will fall by $1.5 \mathrm{lb} / \mathrm{wk}$. What price would maximize Freja's revenue?

x	$s(x)$
$\$.00$	200 lb
$\$ 5.05$	198.5
$\$ 5.10$	197

$s(x)$ is a linear function:

$$
\begin{aligned}
& \text { slope }=\frac{-1.5 l b}{\$ 0.05}=-30 \\
& S(x)=-30 x+b \\
& s(5)=-30(5)+b=200 \rightarrow b=350 \\
& s(x)=-30 x+350
\end{aligned}
$$

Revenue: $R(x)=x \cdot S(x)=x(-30 x+350)=$

$$
\begin{aligned}
& =-30 x^{2}+350 x=-30\left(x^{2}-\frac{350 x}{30}\right)=-30\left(x^{2}-(2) \frac{35 x}{6}\right)= \\
& =-30\left(x^{2}-2 x \cdot \frac{35}{6}+\left(\frac{35}{6}\right)^{2}\right)+30 \cdot\left(\frac{35}{6}\right)^{2}= \\
& =-30\left(x-\frac{35}{6}\right)^{2}+\frac{30.35 \cdot 35}{6.6}= \\
& =-30\left(x-\frac{35}{6}\right)^{2}+\frac{6125}{6}
\end{aligned}
$$

revenue max, when $x=\frac{35}{6}=\$ 5.83$
12. The flow of water over the top of a dam varies jointly with the width of the dam and the $3 / 2$ power of the height of water over the dam. If 12000 gallons/minute flow over a 100 -foot wide dam when the height of water is 32 inches, what would be the height of water over a 50 -foot wide dam with 5000 gallons/ minute flowing over it? Round your final answer to the nearest tenth of an inch.

$$
\begin{aligned}
& f=k w h^{3 / 2} \quad k=\text { coust, w}=\text { width, } h=\text { he ight } \\
& \begin{aligned}
5000 & =(k)(50)\left(h^{3 / 2}\right) \\
12000 & =(k)(100)\left(32^{3 / 2}\right) \\
\frac{5000}{12000} & =\frac{k .50 \cdot h^{3 / 2}}{k \cdot 100 \cdot 32^{3 / 2}} \\
\frac{5}{12} & =\frac{1}{2} \cdot\left(\frac{h}{32}\right)^{3 / 2} \rightarrow\left(\frac{h}{32}\right)^{3 / 2}=\frac{5}{6} \\
\frac{h}{32} & =\left(\frac{5}{6}\right)^{2 / 3} \\
h & =32 \cdot\left(\frac{5}{6}\right)^{2 / 3}=28.3 \text { inches }
\end{aligned}
\end{aligned}
$$

\#13. Given $f(x)=\frac{2 x}{x-1}$ and $(x)=\frac{x-3}{x-6}$, find $(\mathrm{f}-\mathrm{g})(\mathrm{x})$ and state its domain.

$$
(f-g)(x)=\frac{2 x}{x-1}-\frac{x-3}{x-6} \quad \text { Domain: } x \neq 1,6
$$

simplify:

$$
\begin{aligned}
& \frac{2 x(x-6)-(x-3)(x-1)}{(x-1)(x-6)}= \\
= & \frac{2 x^{2}-12 x-x^{2}+4 x-3}{(x-1)(x-6)}= \\
= & \frac{x^{2}-8 x-3}{(x-1)(x-6)}
\end{aligned}
$$

\#14. Given $f(x)=\frac{2 x}{x-1}$ and $(x)=\frac{x-3}{x-6}$, find $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ and state its domain.
Domain:
$g(x)$ unstbe defined: $x \neq 6$
$f(g)=\frac{2 g}{g-1}$ must be defined : $g \neq 1$

$$
g=\frac{x-3}{x-6} \text { camnor equal } 1 \text { for any } x
$$

So douncin of $f(g(x))$ is $x \neq 6$

$$
f(g(x))=\frac{2 g(x)}{g(x)-1}=\frac{2\left(\frac{x-3}{x-6}\right)}{\frac{x-3}{x-6}-1}=\frac{\frac{2(x-3)}{x-6}}{\frac{x-3-x+6}{x-6}}=\frac{2(x-3)}{3}
$$

\#15. Verify using FPI that $f(x)=\frac{1-x}{2-x}$ and $g(x)=\frac{1-2 x}{1-x}$ are inverses.

$$
\begin{aligned}
& f(g(x))=\frac{1-g(x)}{2-g(x)}=\frac{1-\frac{1-2 x}{1-x}}{2-\frac{1-2 x}{1-x}}=\frac{\frac{1-x-1+2 x}{1-x}}{\frac{2-2 x-1+2 x}{1-x}}=\frac{x}{1}=x \\
& \begin{aligned}
& g(f(x))=\frac{1-2 f(x)}{1-f(x)}=\frac{1-2 \cdot \frac{(1-x)}{2-x}}{1-\frac{1-x}{2-x}}=\frac{\frac{2-x-2+2 x}{2-x}}{2-x-1+x} \\
& 2-x
\end{aligned} \\
& =\frac{x}{1}=x
\end{aligned}
$$

That proves f and g are inverses of each ooher.
\#16. Write an explicit description of this sequence:

$$
\begin{aligned}
& \frac{a_{n}=12 .(-1.5)^{n-1}}{a_{1}=12, a_{2}=12(-1.5)=-18, a_{3}=12(-1.5)^{2}=27 \ldots}
\end{aligned}
$$

\#17. Add up the first 800 terms of this sequence:

$$
\begin{aligned}
& a_{1}=1 \\
& \text { 1,4,7,10, } \ldots \text { - avithmesic } \\
& +3 \\
& \text { sequence } \\
& a_{800}=a_{1}+(799)(3)=1+(799)(3)=2398 \\
& \text { sum }=\frac{(800)\left(a_{1}+a_{800}\right)}{2}=\frac{800(1+2398)}{2}= \\
& =959600
\end{aligned}
$$

\#18. The population is now 120 , and expected to double every 8 years. Predict the population in 12 years.
population $=y$
years after now $=x$
gears after now $=x \quad y_{0}=$ initial population $=120$
Find $k: y(8)=120 \cdot 2^{k .8}=240 \rightarrow 2^{8 k}=2^{1} \rightarrow k=\frac{1}{8}$ $y(x)=120.2^{x / 8}$

$$
y(12)=120 \cdot 2^{12 / 8}=120 \cdot 2^{3 / 2}=339.4=339
$$

\#19. What is the inverse of $\mathrm{f}(\mathrm{x})=\log _{7}(\mathrm{x})$?
Hint: Don't overthink it. This is supposed to be the easiest question on the test!

$$
\begin{aligned}
& y=\log _{7} x \rightarrow x=7^{y} \\
& \text { the inverse is } g(x)=7^{x}
\end{aligned}
$$

\#20. Sketch graphs of $f(x)=3 x$ (in blue) and $g(x)=\log _{3}(x)$ (in red). Label the coordinates of the five amigo points for each, AND be sure to show the asymptotes.

\#21. Rewrite as a sum or difference of logarithms:

$$
\begin{aligned}
& \quad \log \left(\frac{x^{2} y}{z^{3}}\right)=\log x^{2} y-\log z^{3}= \\
& =\log x^{2}+\log y-\log z^{3}= \\
& =2 \log x+\log y-3 \log z
\end{aligned}
$$

\#22. Rewrite as a single logarithm:

$$
\begin{aligned}
& \log _{2 x} x-3 \log _{2}(4 y)+2 \log _{2}(x-1)= \\
= & \log _{2} x-\log _{2}(4 y)^{3}+\log _{2}(x-1)^{2}= \\
= & \log _{2} \frac{x}{(4 y)^{3}}+\log _{2}(x-1)^{2}= \\
= & \log _{2}\left(\frac{x(x-1)^{2}}{64 y^{3}}\right)
\end{aligned}
$$

\#23. Solve: $12^{2 x-1}=8 / \ln$

$$
\begin{aligned}
& (2 x-1) \ln 12=\ln 8 \\
& 2 x-1=\frac{\ln 8}{\ln 12}=0.84 \\
& 2 x=1.84 \\
& x=\frac{1.84}{2}=0.92
\end{aligned}
$$

\#24. Solve for the inverse of $f(x)=3+\ln (2 x)$

$$
y=3+\ln 2 x
$$

solve for $x: \quad y-3=\ln 2 x$

$$
\begin{aligned}
& e^{y-3}=2 x \\
& x=\frac{e^{y-3}}{2}
\end{aligned}
$$

The inverse is: $g(x)=\frac{e^{x-3}}{2}$
\#25. The half-life of Biffium is 7300 years. How old is a fossil the presently contains only 0.5% of its original Biffium?
$x=$ time in years
$y=$ amount of Biffium vemaining:

$$
y=y_{0} \cdot 2^{-t / 7300}
$$

${ }^{\text {initial amount at dime }} t=0$
0.5%

$$
\begin{aligned}
& 0.005 y_{0}=y_{0} 2^{-t / 7300} \\
& 0.005=2^{-t / 7300} / \ln \\
& \ln 0.005=\frac{-t}{7300} \cdot \ln 2 \\
& t=-7300 \cdot \frac{\ln 0.005}{\ln 2}=55800 \text { years }
\end{aligned}
$$

