

Problem Set \#3 SHOW ALL WORK- NO WORK= NO CREDIT
All work is to be done individually, using only methods covered in this course, and with no additional resources.

1) Given the function: $f(x)=2 x^{3}-6 x^{2}+8$.

Using Calculus techniques be sure to find and state the coordinates of the relative extrema and the inflection points) if they exist. Also, please state the coordinates of the \mathbf{y}-intercept. Please state the intervals where the function is increasing and decreasing, along with the intervals of concavity, and use them to draw an accurate sketch of the function.

Please show your work in the space below and state your answers in the box to the right. Please draw your sketch on the grid on the NEXT PAGE. [5pts]

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-12 x=6 x(x-2)=0 \rightarrow x=0,2 \\
& \frac{f^{\prime}(x)>0,}{} f^{\prime}(x)<0, f^{\prime}(x)>0 \\
& f(x)>0 \quad f(x) \geqslant 2 f(x) \geqslant
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Local max: } x=0 \\
f(0)=2(0)^{3}-6(0)^{2}+8=8
\end{array}\right\} \text { point }(0,8)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Local win: } x=2 \\
f(2)=2(2)^{3}-6(2)^{2}+8=0
\end{array}\right\} \text { point }(2,0) \\
& f^{\prime \prime}(x)=12 x-12=12(x-1)=0 \rightarrow x=1
\end{aligned}
$$

$$
\xrightarrow[\substack{f^{\prime \prime}(x)<0}]{\substack{\text { concave } \\
\text { down }}} \begin{aligned}
& f^{\prime \prime}(x)>0 \\
& f(x) \text { concave } \\
& \text { up }
\end{aligned}
$$

$\left.\begin{array}{l}\text { Inflection point: } x=1 \\ f(1)=2(1)^{3}-6(1)^{2}+8=4\end{array}\right\}$ point $(1,4)$
y-intercept:

$$
\left.\begin{array}{l}
x=0 \\
f(0)=2(0)^{3}-6(0)^{2}+8=8
\end{array}\right\} \text { point }(0,8)
$$

Relative Extrema (identify each as a local max. or min.):
Local max: $(0,8)$ Local min: $(2,0)$

Inflection Points: $(1,4)$
y-intercept: $(0,8)$

Intervals) $f(x)$ is increasing:

$$
\begin{aligned}
& (-\infty, 0) \\
& (2, \infty)
\end{aligned}
$$

Interval (s) $f(x)$ is decreasing:

$$
(0,2)
$$

Interval(s) where $f(x)$ is concave up:

$$
(1, \infty)
$$

Interval (s) where $f(x)$ is concave down:

$$
(-\infty, 1)
$$

Grid for question \#1:

2) Find the absolute maximum and absolute minimum values of each function below over the given intervals. Be sure to show all of the appropriate work to reach your conclusion.
a) $f(x)=2 x^{3}-9 x^{2}+80$, over the interval $[-3,2]$.
$f(x)$ is continuous over $[-3,2]$.
Critical values:

$$
\begin{aligned}
& \text { Critical values: } \\
& f^{\prime}(x)=6 x^{2}-18 x=6 x(x-3)=0 \rightarrow x=0,3
\end{aligned}
$$

Absolute max/min occur at boundaries of at witical values:

$$
\begin{aligned}
& f(-3)=2(-3)^{3}-9(-3)^{2}+80=-55 \leftarrow \text { Abs. win } \\
& f(0)=2(0)^{3}-9(0)^{2}+80=80 \leftarrow \text { Abs. max } \\
& f(2)=2(2)^{3}-9(2)^{2}+80=60
\end{aligned}
$$

Absolute max: $(0,80)$
Absolute min: $(-3,-55)$
b) $g(x)=x+\frac{81}{x}$, over the interval $(0, \infty)$.
vertical asymptote: $x=0$
$g(x)$ is differentiable over $(0, \infty)$

$$
g^{\prime}(x)=1-\frac{81}{x^{2}}=0 \rightarrow \frac{81}{x^{2}}=1 \rightarrow x^{2}=81 \rightarrow x=-9,9
$$

$\left.\begin{array}{l}\text { Local min: } x=9 \\ g(9)=9+\frac{81}{9}=18\end{array}\right\}$ point $(9,18)$
Absolute uni: $(9,18)$ by Maximum-Minimum Principle 2 Absolute max: no ne
3) A watch manufacturer determines that in order to sell x units of a new watch, the price per unit in dollars must be:

$$
p(x)=50-.5 x
$$

The manufacturer also determines that the total cost of producing x units is given by:

$$
C(x)=10 x+3
$$

a) Find the total revenue function, $R(x)$.

$$
R(x)=x p(x)=x(50-0.5 x)=-0.5 x^{2}+50 x
$$

b) Find the total profit function, $P(x)$.

$$
\begin{aligned}
P(x)=R(x)-C(x) & =-0.5 x^{2}+50 x-(10 x+3)= \\
& =-0.5 x^{2}+40 x-3
\end{aligned}
$$

c) How many total units must the company produce and sell in order to maximize profits?

Maximize $p(x)$ for $x \geqslant 0$:

$$
p^{\prime}(x)=-0.5(2 x)+40=-x+40=0 \rightarrow x=40
$$

$P^{\prime \prime}(x)=-1<0 \rightarrow P(x)$ is concave down
\Rightarrow Local and absolute max: $x=40$ units
d) What is the maximum profit?

$$
P(40)=-0.5(40)^{2}+40(40)-3=\$ 797
$$

4) A farmer is fencing in a rectangular area of his field for growing crops. He has 600 yards of fencing available to build the perimeter for all four sides. Using Calculus, determine the dimensions he should use to fence in the field if he wants to maximize the area? What is the maximum area?

Perimesev $=600$

ARM

$$
\begin{aligned}
2 x+2 y & =600 \\
x+y & =300 \\
y & =300-x
\end{aligned}
$$

Domain:

$$
\left.\begin{array}{l}
x \geqslant 0 \\
y=300-x \geqslant 0 \rightarrow x \leqslant 300
\end{array}\right\} \quad 0 \leqslant x \leqslant 300
$$

Area: $A(x)=x \cdot y=x(300-x)=-x^{2}+300 x$
Maximize $A(x)$ over $0 \leqslant x \leqslant 300$:
$A^{\prime}(x)=-2 x+300=0 \rightarrow x=150$
$A^{\prime \prime}(x)=-2<0 \rightarrow A(x)$ is concave down

Local and A solute max at $x=150$ yards

$$
y=300-x=300-150=150 \text { yards }
$$

Max area:

$$
A(150)=150(300-150)=150^{2}=22500 \text { yards }^{2}
$$

$$
\begin{aligned}
& k=\frac{\ln 2}{T}=\frac{\ln 2}{96} \\
& N(t)=N_{0} e^{-k t} \\
& (1-0.32) N \sigma=N / e^{-k t} \\
& 0.68=e^{-k t} \\
& \ln 0.68=-k t \\
& t=-\frac{\ln 0.68}{k}=-\frac{\ln 0.68}{\frac{\ln 2}{96}}=-96 \cdot \frac{\ln 0.68}{\ln 2}=53.41 \text { years }
\end{aligned}
$$

6) Evaluate and simplify the indefinite integrals below: [16 pts]

$$
\begin{aligned}
& \text { a) } \int \frac{1}{x^{7}} d x \\
& =\int x^{-7} d x= \\
& =\frac{x^{-6}}{-6}+C=-\frac{1}{6 x^{6}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \int\left(x^{9}+\frac{5}{\sqrt{x}}-2 e^{4 x}\right) d x \\
= & \int x^{9} d x+5 \int x^{-\frac{1}{2}} d x-2 \int e^{4 x} d x= \\
= & \frac{x^{10}}{10}+\frac{5 x^{1 / 2}}{(1 / 2)}-2 \cdot \frac{e^{4 x}}{4}+c= \\
= & \frac{x^{10}}{10}+10 \sqrt{x}-\frac{1}{2} \cdot e^{4 x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \int 5 x^{1 / 3} d x \\
& =5 \int x^{1 / 3} d x= \\
& =5 \cdot \frac{x^{4 / 3}}{4 / 3}+c= \\
& =\frac{15}{4} \cdot x^{4 / 3}+c \\
& \text { d) } \int\left(4 e^{3 x}+\frac{5}{x}-6 x^{2}\right) d x \\
& =4 \int e^{3 x} d x+5 \int \frac{d x}{x}-6 \int x^{2} d x \\
& =4 \cdot \frac{e^{3 x}}{3}+5 \cdot \ln |x|-\frac{6 x^{3}}{3}+c \\
& =\frac{4}{3} \cdot e^{3 x}+5 \ln |x|-2 x^{3}+c
\end{aligned}
$$

