	FINAL EXAM	
	10 pages - 15 problems	
200 points		NAME

DIRECTIONS: Show all the work in the space provided. Box final answers, and follow the indicated directions. Problem \#3 is worth 20 pts, Problem \#6 is worth 25 points. All other problems are worth 12 pts each.

1) Find the value of c so that the function f is continuous on the entire real line.

$$
f(x)=\left\{\begin{array}{l}
x^{2}+3, x \leq 1 \\
c x+4, x>1
\end{array}\right.
$$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+3\right)=1+3=4=f(1)
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(c x+4)=c+4
$$

$$
4=c+4 \quad \rightarrow \quad c=0
$$

2) Let $f(x)=x^{2}-x$. Calculate by definition $f^{\prime}(3)$

$$
\begin{aligned}
f(3) & =3^{2}-3=6 \\
f(3+h) & =(3+h)^{2}-(3+h)=h^{2}+5 h+6 \\
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(h)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+5 h+6-6}{h}= \\
& =\lim _{h \rightarrow 0}(h+5)=0+5=5
\end{aligned}
$$

3) Calculate:

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x^{2}-81}=\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{(x-9)(x+9)}= \\
& =\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)(x+9)}= \\
& =\lim _{x \rightarrow 9} \frac{1}{(\sqrt{x}+3)(x+9)}=\frac{1}{(3+3)(9+9)}=\frac{1}{108}
\end{aligned}
$$

b) $\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{\theta}$. $=$

$$
\begin{aligned}
& \text { b) } \lim _{\theta \rightarrow 0} \frac{\theta}{\theta} \cdot \\
& =\underbrace{\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{2 \theta}}_{1} \cdot 2=(1)(2)=2
\end{aligned}
$$

c) $\lim _{\theta \rightarrow \infty} \frac{\sin 2 \theta}{\theta}=0$ by squeeze Theorem:

$$
-\frac{1}{\theta} \leq \frac{\sin 2 \theta}{\theta} \leq \frac{1}{\theta}
$$

$$
\text { d) } \begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}-3}{-2 x}= \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{-2 x}+\lim _{x \rightarrow-\infty} \frac{3}{2 x}= \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{+2 \sqrt{x^{2}}} x=-|x|=-\sqrt{x^{2}}, \text { when } x<0 \\
& = \\
& \lim _{x \rightarrow-\infty} \frac{1}{2} \sqrt{\frac{x^{2}+x}{x^{2}}}=\frac{1}{2} \lim _{x \rightarrow-\infty} \sqrt{1+\frac{1}{x}}=\frac{1}{2} \sqrt{1+0}=\frac{1}{2}
\end{aligned}
$$

4) A ladder 17 feet long is leaning against a vertical wall. The top of the ladder is sliding down the wall at a rate of 2 feet per second.
(a) Draw and label the diagram for this application problem. How fast is the foot of the ladder moving away from the wall when the foot is 8 feet from the base of the wall?

$x=8 \mathrm{ft}$
$y=\sqrt{17^{2}-8^{2}}=15 \mathrm{ft}$

$$
y^{\prime}=-2 f t / \sec
$$

$$
\begin{aligned}
& x(t)^{2}+y(t)^{2}=17^{2} / \frac{d}{d t}(\ldots) \\
& 2 x x^{\prime}+2 y y^{\prime}=0
\end{aligned}
$$

(b) Find the rate at which the angle between the ladder and the wall is changing when the foot of the ladder is 8 feet from the base of the wall.

$$
\begin{aligned}
& \cos \theta(t)=\frac{y(t)}{17} / \frac{d}{d t}(\ldots) \\
& -\sin \theta \cdot \theta^{\prime}=\frac{y^{\prime}}{17} \\
& \theta^{\prime}=\frac{-y^{\prime}}{17 \sin \theta}=\frac{-(-2 \mathrm{ft} / \mathrm{sec})}{(17 \mathrm{ft})\left(\frac{8}{17}\right)}=\frac{1}{4}=0.25 \frac{\mathrm{rad}}{\sec }
\end{aligned}
$$

5) Consider the function f defined implicitly by:

$$
x+y-1=\ln \left(x^{2}+y^{2}\right)
$$

a) Find and sketch the tangent line to f at the point $(1,0)$.

$$
\begin{aligned}
& x+y-1=\ln \left(x^{2}+y^{2}\right) / \frac{d}{d x}(\cdots) \\
& 1+y^{\prime}-0=\frac{2 x+2 y y^{\prime}}{x^{2}+y^{2}} / x=1, y=0 \\
& 1+y^{\prime}=\frac{2+0}{1+0} \rightarrow y^{\prime}=2-1=1
\end{aligned}
$$

Tangent of slope $m=1$, though $(1,0)$:

$$
\begin{aligned}
& y-0=1(x-1) \\
& y=x-1
\end{aligned}
$$

b) Approximate $f(1.1)$ using the tangent line approximation from part a).

$$
\begin{aligned}
& f(x) \approx x-1 \\
& f(1.1) \approx 1.1-1=0.1
\end{aligned}
$$

6) Differentiate:

$$
\begin{aligned}
& \text { a) } f(x)=\left(\frac{x-3}{x^{2}+1}\right)^{2} \\
& f^{\prime}(x)=\frac{2(x-3)}{x^{2}+1} \cdot \frac{x^{2}+1-(x-3) 2 x}{\left(x^{2}+1\right)^{2}}=\frac{2(x-3)\left(-x^{2}+6 x+1\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

b) $g(x)=\sin \left(x^{2}\right)$

$$
g^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right)
$$

c) $h(x)=\sqrt{e^{2 x}+e^{-2 x}}$

$$
h^{\prime}(x)=\frac{1}{2 \sqrt{e^{2 x}+e^{-2 x}}} \cdot\left(2 e^{2 x}-2 e^{-2 x}\right)=\frac{e^{2 x}-e^{-2 x}}{\sqrt{e^{2 x}+e^{-2 x}}}
$$

d) $F(x)=\int_{x}^{x^{2}} \frac{\sin t}{t} d t$

$$
F^{\prime}(x)=\frac{\sin \left(x^{2}\right)}{x^{2}}, 2 x-\frac{\sin (x)}{x} \cdot 1=\frac{2 \sin \left(x^{2}\right)-\sin x}{x}
$$

e)

$$
\begin{aligned}
& k(x)=x^{x} \\
& \ln k(x)=x \ln x \\
& \frac{k^{\prime}}{k}=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1 \\
& k^{\prime}=(\ln x+1) k(x)=(\ln x+1) x^{x}
\end{aligned}
$$

7) Find the relative extrema of the function $f(x)=\frac{1}{2} x-\sin x \quad$ in the interval $[0,2 \pi]$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}-\cos x=0 \rightarrow \cos x=\frac{1}{2} \\
& x=\frac{\pi}{3} \text { or } x=\frac{5 \pi}{3} \\
& \underset{f(x) \searrow_{0}^{\frac{\pi}{3}}+,+,+,+}{f^{\prime}(x)}+\underset{2 \pi}{\frac{5 \pi}{3}} x
\end{aligned}
$$

Rel. min: $y\left(\frac{\pi}{3}\right)=\frac{\pi}{6}-\frac{\sqrt{3}}{2}$
Rel. max: $y\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{6}+\frac{\sqrt{3}}{2}$
8) A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce a box with maximal volume?

$$
\left.\left.\begin{array}{rl}
\text { Area } & =\text { base }+ \text { sides }(\text { no top })= \\
& =x^{2}+4 x y=108 \\
& y=\frac{108-x^{2}}{4 x}=\frac{27}{x}-\frac{x}{4}
\end{array}\right\} \begin{array}{l}
x>0 \\
y=\frac{108-x^{2}}{4 x}>0
\end{array} \quad x<\sqrt{108}\right\} 0<x<6 \sqrt{3}
$$

Volume: $V=x^{2} \cdot y=27 x-\frac{x^{3}}{4}$

$$
y^{\prime}=27-\frac{3}{4} x^{2}=0 \rightarrow x=6 \text { or }
$$

Maximal volume at $x=6$ inches,

$$
y=\frac{27}{6}-\frac{6}{4}=3 \text { inches dimensions } 6 \times 6 \times 3
$$

9) Analyze the function $f(x)=x^{2} e^{-x}$. Report extrema, inflection points, intervals of monotonicity and concavity, and asymptotes. Graph the function by hand based on your analysis.
Domain: all x, no V.A.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=0, \lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{x}}=\infty, \text { H.A.: } y=0 \\
& \text { No oblique. }
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=0 \rightarrow y \text {-intercept }(0,0) \\
& 0=\frac{x^{2}}{e^{x}} \rightarrow x=0 \rightarrow x \text {-intercept }(0,0)
\end{aligned}
$$

$$
f(x)>0 \text { for } x \neq 0 \quad f(x)+++\frac{1}{0}+++
$$

$$
f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=\frac{x(2-x)}{e^{x}}=0
$$

$$
x=0 \text { or } x=2
$$

$y_{\text {min }}=0$ at $x=0$
$y_{\text {max }}=\frac{4}{e^{2}} \approx 0.54$ at $x=2$

$$
\begin{aligned}
& f^{\prime \prime}=2 e^{-x}-2 x e^{-x}-2 x e^{-x}+x^{2} e^{-x}= \\
& =\frac{x^{2}-4 x+2}{e^{x}}=0 \\
& x=2-\sqrt{2} \approx 0.59 \text { or } x=2+\sqrt{2} \approx 3.41
\end{aligned}
$$

10) Find $\left(f^{-1}\right)^{\prime}(14)$ if $f(x)=x \sqrt{x-3}$. Let $g(x)=f^{-1}(x)$

$$
\begin{aligned}
& x \sqrt{x-3}=14 \rightarrow x=7 \rightarrow g(14)=7 \\
& f^{\prime}(x)=\sqrt{x-3}+\frac{x}{2 \sqrt{x-3}} \\
& f^{\prime}(7)=\sqrt{4}+\frac{7}{2 \sqrt{4}}=2+\frac{7}{4}=\frac{15}{4} \\
& g^{\prime}(14)=\frac{1}{f^{\prime}(g(14))}=\frac{1}{f^{\prime}(7)}=\frac{1}{\frac{15}{4}}=\frac{4}{15}
\end{aligned}
$$

11) a) Approximate $\int_{0}^{2} \frac{10}{x^{2}+1} d x$ using left Riemann sum with 4 equal subintervals.

$$
\Delta x=\frac{2}{4}=\frac{1}{2}
$$

$$
\begin{aligned}
R S & =\Delta x(f(0)+f(0.5)+f(1)+f(1.5))= \\
& =\frac{1}{2} \cdot\left(10+8+5+\frac{40}{13}\right)=\frac{339}{26} \approx 13.038
\end{aligned}
$$

b) Calculate the exact value of the integral using Fundamental Theorem of Calculus.

$$
\begin{aligned}
\int_{0}^{2} \frac{10 d x}{x^{2}+1} & =\left.10 \arctan x\right|_{0} ^{2}= \\
& =10 \arctan 2 \approx 11.071
\end{aligned}
$$

12) Find the area of the region bounded by the curve $y=\frac{x^{2}+4}{x}$, and lines $x=1, x=4$,

$$
\begin{aligned}
\text { Area } & =\int_{1}^{4} \frac{x^{2}+4}{x} d x= \\
& =\int_{1}^{4}\left(x+4 x^{-1}\right) d x= \\
& =\left.\frac{x^{2}}{2}\right|_{1} ^{4}+\left.4 \ln x\right|_{1} ^{4}= \\
& =\frac{1}{2}(16-1)+4(\ln 4-0)= \\
& =\frac{15}{2}+4 \ln 4 \approx 13.045
\end{aligned}
$$

13) Calculate: $\int_{3}^{6} \frac{\mathrm{x}}{3 \sqrt{\mathrm{x}^{2}-8}} d x=$

$$
\begin{aligned}
& {\left[\begin{array}{l}
u=x^{2}-8 \\
d u=2 x d x \rightarrow x d x=\frac{1}{2} \cdot d u \\
x=3 \rightarrow u=9-8=1 ; \quad x=6 \rightarrow u=36-8=28
\end{array}\right]} \\
& =\int_{1}^{28} \frac{\frac{1}{2} d u}{3 \sqrt{u}}=\frac{1}{6} \int_{1}^{28} u^{-1 / 2} d u= \\
& =\left.\frac{1}{6} \frac{u^{1 / 2}}{\frac{1}{2}}\right|_{1} ^{28}=\frac{1}{3}(\sqrt{28}-\sqrt{1})= \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14) Find } \int \frac{e^{\frac{1}{x}}}{x^{2}} d x= \\
& {\left[\begin{array}{l}
u=\frac{1}{x} \\
d u=-\frac{1}{x^{2}} d x \rightarrow \frac{d x}{x^{2}}=-d u \\
=\int e^{u} \cdot(-d u)=-e^{u}+c= \\
\\
=-\frac{e^{\frac{1}{x}}+c}{}
\end{array} .\right.}
\end{aligned}
$$

15) Find $\int \frac{d x}{x^{2}-4 x+7}=\int \frac{d x}{x^{2}-4 x+4+3}=\int \frac{d x}{(x-2)^{2}+(\sqrt{3})^{2}}=$

$$
\begin{aligned}
& {\left[\begin{array}{l}
u=x-2 \\
d u=d x
\end{array}\right]} \\
& =\int \frac{d u}{(\sqrt{3})^{2}+u^{2}}=\frac{1}{\sqrt{3}} \arctan \frac{u}{\sqrt{3}}+C= \\
& =\frac{1}{\sqrt{3}} \arctan \left(\frac{x-2}{\sqrt{3}}\right)+C
\end{aligned}
$$

